An Introduction to Optimization for Chemical and Environmental Engineers

Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsume single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.

An Introduction to Optimization

This book provides a comprehensive overview of the most important and frequently considered optimization problems concerning cutting and packing. Based on appropriate modeling approaches for the problems considered, it offers an introduction to the related solution methods. It also addresses aspects like performance results for heuristic algorithms and bounds of the optimal value, as well as the packability of a given set of objects within a predefined container. The problems discussed arise in a wide variety of different fields of application and research, and as such, the fundamental knowledge presented in this book make it a valuable resource for students, practitioners, and researchers who are interested in dealing with such tasks.

Handbook of Healthcare Delivery Systems

This book introduces the reader to the field of multiobjective optimization through problems with simple structures, namely those in which the objective function and constraints are linear. Fundamental notions as well as state-of-the-art advances are presented in a comprehensive way and illustrated with the help of numerous examples. Three of the most popular methods for solving multiobjective linear problems are explained, and exercises are provided at the end of each chapter, helping students to grasp and apply key concepts and methods to more complex problems. The book was motivated by the fact that the majority of the practical problems we encounter in management science, engineering or operations research involve conflicting criteria and therefore it is more convenient to formulate them as multicriteria optimization models, the solution concepts and methods of which cannot be treated using traditional mathematical programming approaches.

Optimization for Communications and Networks

This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical -imization problems of mechanical structures, i. e., size, shape and topology optimization, are treated. The focus is on concrete numerical solution methods for discrete and (finite element) discretized
Large-scale Optimization A complete introduction to partial differential equations, this textbook provides a rigorous yet accessible guide to students in mathematics, physics and engineering. The presentation is lively and up to date, paying particular emphasis to developing an appreciation of underlying mathematical theory. Beginning with basic definitions, properties and derivations of some basic equations of mathematical physics from basic principles, the book studies first order equations, classification of second order equations, and the one-dimensional wave equation. Two chapters are devoted to the separation of variables, whilst others concentrate on a wide range of topics including elliptic theory, Green's functions, variational and numerical methods. A rich collection of worked examples and exercises accompany the text, along with a large number of illustrations and graphs to provide insight into the numerical examples. Solutions to selected exercises are included for students whilst extended solution sets are available to lecturers from solutions@cambridge.org.

Multiobjective Linear Programming An Introduction to Optimization Techniques introduces the basic ideas and techniques of optimization. Optimization is a precise procedure using design constraints and criteria to enable the planner to find the optimal solution. Optimization techniques have been applied in numerous fields to deal with different practical problems. This book is designed to give the reader a sense of the challenge of analyzing a given situation and formulating a model for it while explaining the assumptions and inner structure of the methods discussed as fully as possible. It includes real-world examples and applications making the book accessible to a broader readership. Features Each chapter begins with the Learning Outcomes (LO) section, which highlights the critical points of that chapter. All learning outcomes, solved examples and questions are mapped to six Bloom Taxonomy levels (BT Level). Book offers fundamental concepts of optimization without becoming too complicated. A wide range of solved examples are presented in each section after the theoretical discussion to clarify the concept of that section. A separate chapter on the application of spreadsheets to solve different optimization techniques. At the end of each chapter, a summary reinforces key ideas and helps readers recall the concepts discussed. The wide and emerging uses of optimization techniques make it essential for students and professionals. Optimization techniques have been applied in numerous fields to deal with different practical problems. This book serves as a textbook for UG and PG students of science, engineering, and management programs. It will be equally useful for Professionals, Consultants, and Managers.

Solutions Manual to An Introduction to Mathematical Modeling: The goal of this book is to present the main ideas and techniques in the field of continuous smooth and nonsmooth optimization. Starting with the case of differentiable data and the classical results on constrained optimization problems, and continuing with the topic of nonsmooth objects involved in optimization theory, the book concentrates on both theoretical and practical aspects of this field. This book prepares those who are engaged in research by giving repeated insights into ideas that are subsequently dealt with and illustrated in detail.

Numerical Methods in Sensitivity Analysis and Shape Optimization COVERS THE FUNDAMENTAL TOPICS IN MATHEMATICS, STATISTICS, AND FINANCIAL MANAGEMENT THAT ARE REQUIRED FOR A THOROUGH STUDY OF FINANCIAL MARKETS This comprehensive yet accessible book introduces students to financial markets and delves into more advanced material at a steady pace while providing motivating examples, poignant remarks, counterexamples, ideological clashes, and intuitive traps throughout. Tempered by real-life cases and actual market structures, An Introduction to Financial Markets: A Quantitative Approach accentuates theory through quantitative modeling whenever and wherever necessary. It focuses on the lessons learned from timely subject matter such as the impact of the recent subprime mortgage storm, the collapse of LTCM, and the harsh criticism on risk management and innovative finance. The book also provides the necessary foundations in stochastic calculus and optimization, alongside financial modeling concepts that are illustrated with relevant and hands-on examples. An Introduction to Financial Markets: A Quantitative Approach starts with a complete overview of the subject matter. It then moves on to sections covering fixed income assets, equity portfolios, derivatives, and advanced optimization models. This book’s balanced and broad view of the state-of-the-art in financial decision-making helps provide readers with all the background and modeling tools needed to make “honest money” and, in the process, to become a sound professional. Stresses that gut feelings are not always sufficient and that “critical thinking” and real world applications are appropriate when dealing with complex social systems involving multiple players with conflicting incentives Features a related website that contains a solution manual for end-of-chapter problems Written in a
An Introduction to Management Science: Quantitative Approaches to Decision Making

Numerical Analysis and Optimization Sensitivity analysis and optimal shape design are key issues in engineering that have been affected by advances in numerical tools currently available. This book, and its supplementary online files, presents basic optimization techniques that can be used to compute the sensitivity of a given design to local change, or to improve its performance by local optimization of these data. The relevance and scope of these techniques have improved dramatically in recent years because of progress in discretization strategies, optimization algorithms, automatic differentiation, software availability, and the power of personal computers. Numerical Methods in Sensitivity Analysis and Shape Optimization will be of interest to graduate students involved in mathematical modeling and simulation, as well as engineers and researchers in applied mathematics looking for an up-to-date introduction to optimization techniques, sensitivity analysis, and optimal design.

Engineering Optimization This introduction to optimization emphasizes the need for both a pure and an applied mathematical point of view. Beginning with a chapter on linear algebra and Euclidean geometry, the author then applies this theory with an introduction to linear programming. There follows a discussion of convex analysis, which finds application in non-linear programming. The book ends with an extensive commentary to the exercises that are given at the end of each chapter. The author's straightforward, geometrical approach makes this an attractive textbook for undergraduate students of mathematics, engineering, operations research and economics.

Set-valued Optimization This textbook provides an introduction to the growing interdisciplinary field of computational science. It combines a foundational development of numerical methods with a variety of illustrative applications spread across numerous areas of science and engineering. The intended audience is the undergraduate who has completed introductory coursework in mathematics and computer science. Students gain computational acuity by authoring their own numerical routines and by practicing with numerical methods as they solve computational models. This education encourages students to learn the importance of answering: How expensive is a calculation, how trustworthy is a calculation, and how might we model a problem to apply a desired numerical method? The text is written in two parts. Part I provides a succinct, one-term inauguration into the primary routines on which a further study of computational science rests. The material is organized so that the transition to computational science from coursework in calculus, differential equations, and linear algebra is natural. Beyond the mathematical and computational content of Part I, students gain proficiency with elemental programming constructs and visualization, which are presented in MATLAB syntax. The focus of Part II is modeling, wherein students build computational models, compute solutions, and report their findings. The models purposefully intersect numerous areas of science and engineering to demonstrate the pervasive role played by computational science.

An Introduction to Continuous Optimization Decomposition methods aim to reduce large-scale problems to simpler problems. This monograph presents selected aspects of the dimension-reduction problem. Exact and approximate aggregations of multidimensional systems are developed and from a known model of input-output balance, aggregation methods are categorized. The issues of loss of accuracy, recovery of original variables (disaggregation), and compatibility conditions are analyzed in detail. The method of iterative aggregation in large-scale problems is studied. For fixed weights, successively simpler aggregated problems are solved and the convergence of their solution to that of the original problem is analyzed. An introduction to block integer programming is considered. Duality theory, which is widely used in continuous block programming, does not work for the integer problem. A survey of alternative methods is presented and special attention is given to combined methods of decomposition. Block problems in which the coupling variables do not enter the binding constraints are studied. These models are worthwhile because they permit a decomposition with respect to primal and dual variables by two-level algorithms instead of three-level algorithms. Audience: This book is addressed to specialists in operations research, optimization, and optimal control.

An Introduction to Partial Differential Equations An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic
Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristic algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Introduction to Cutting and Packing Optimization Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using Python Follow a deep learning project from conception to production using TensorFlow Use NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.

Introduction to Applied Optimization Reflecting the latest developments in Microsoft Office Excel 2013, Anderson/Sweeney/Williams/Camm/Cochran/Fry/Ohlmann's AN INTRODUCTION TO MANAGEMENT SCIENCE: QUANTITATIVE APPROACHES TO DECISION MAKING, 14E equips readers with a sound conceptual understanding of the role that management science plays in the decision-making process. The trusted market leader for more than two decades, the book uses a proven problem-scenario approach to introduce each quantitative technique within an applications setting. All data sets, applications, and screen visuals reflect the details of Excel 2013 to effectively prepare you to work with the latest spreadsheet tools. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Optimization Techniques Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization. Applies concepts in nature and biology to develop new algorithms for nonlinear optimization Offers working MATLAB® programs for the major algorithms described, applying them to a range of problems Provides useful comparative studies of the algorithms, highlighting their strengths and weaknesses Discusses the current state-of-the-field and indicates possible areas of future development
Introduction to Nature-Inspired Optimization Master today's important spreadsheet and business analytics skills with SPREADSHEET MODELING AND DECISION ANALYSIS: A PRACTICAL INTRODUCTION TO BUSINESS ANALYTICS, 9E, written by respected business analytics innovator Cliff Ragsdale. This edition's clear presentation, realistic examples and fascinating topics help you become proficient in today's most widely used business analytics techniques using the latest version of Excel in Microsoft Office 365 or Office 2019. Become skilled in using the newest Excel functions and tools as well as Analytic Solver and Data Mining add-ins. This edition helps you develop both algebraic and spreadsheet modeling skills with step-by-step instructions and annotated, full-color screen images that make examples easy to follow. Special sections, such as World of Business Analytics, emphasize how to apply what you learn about descriptive, predictive and prescriptive analytics to today's real business situations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Mathematical Programming Drawn from nearly four decades of Lawrence L. Kupper's teaching experiences as a distinguished professor in the Department of Biostatistics at the University of North Carolina, Exercises and Solutions in Biostatistical Theory presents theoretical statistical concepts, numerous exercises, and detailed solutions that span topics from basic probability to finishing undergraduates and beginning graduates.

Exercises and Solutions in Biostatistical Theory Optimization is the process by which the optimal solution to a problem, or optimum, is produced. The word optimum has come from the Latin word optimus, meaning best. And since the beginning of his existence Man has strived for that which is best. There has been a host of contributions, from Archimedes to the present day, scattered across many disciplines. Many of the earlier ideas, although interesting from a theoretical point of view, were originally of little practical use, as they involved a daunting amount of computational effort. Now modern computers perform calculations, whose time was once estimated in man-years, in the figurative blink of an eye. Thus it has been worthwhile to resurrect many of these earlier methods. The advent of the computer has helped bring about the unification of optimization theory into a rapidly growing branch of applied mathematics. The major objective of this book is to provide an introduction to the main optimization techniques which are at present in use. It has been written for final year undergraduates or first year graduates studying mathematics, engineering, business, or the physical or social sciences. The book does not assume much mathematical knowledge. It has an appendix containing the necessary linear algebra and basic calculus, making it virtually self-contained. This text evolved out of the experience of teaching the material to finishing undergraduates and beginning graduates.

Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Business Analytics During the last decade the techniques of non-linear optimization have emerged as an important subject for study and research. The increasingly widespread application of optimization has been stimulated by the availability of digital computers, and the necessity of using them in the investigation of large systems. This book is an introduction to non-linear methods of optimization and is suitable for undergraduate and post graduate courses in mathematics, the physical and social sciences, and engineering. The first half of the book covers the basic optimization techniques including linear search methods, steepest descent, least squares, and the Newton-Raphson method. These are described in detail, with worked numerical examples, since they form the basis from which advanced methods are derived. Since 1965 advanced methods of unconstrained and constrained optimization have been developed to utilise the computational power of the digital computer. The second half of the book describes fully important algorithms in current use such as variable metric methods for unconstrained problems and penalty function methods for constrained problems. Recent work, much of which has not yet been widely applied, is reviewed and compared with currently popular techniques under a few generic main headings. vi PREFACE Chapter 1 describes the optimization problem in mathematical form and defines the terminology used in the remainder of the book. Chapter 2 is concerned with single variable optimization. The main algorithms of both search and approximation methods are developed in detail since they are an essential part of many multi-variable methods.

Biologically Rationalized Computing Techniques For Image Processing Applications Exercises and Solutions in Statistical Theory helps students and scientists obtain an in-depth understanding of statistical theory by working on and reviewing solutions to interesting and challenging exercises of practical importance. Unlike similar books, this text incorporates many exercises that apply to real-world settings and provides much more thorough solutions. The exercises and selected detailed solutions cover from basic probability theory through to the theory of statistical inference. Many of the exercises deal with important, real-life scenarios in areas such as medicine, epidemiology, actuarial science, social science, engineering, physics, chemistry, biology, environmental health, and sports. Several exercises illustrate the utility of study design strategies, sampling from finite populations, maximum likelihood, asymptotic theory, latent class analysis, conditional inference, regression analysis, generalized linear models, Bayesian analysis, and other statistical topics. The book also contains references to published books and articles that offer more information about the statistical concepts. Designed as a supplement for advanced undergraduate and graduate courses, this text is a
valuable source of classroom examples, homework problems, and examination questions. It is also useful for scientists interested in enhancing or refreshing their theoretical statistical skills. The book improves readers’ comprehension of the principles of statistical theory and helps them see how the principles can be used in practice. By mastering the theoretical statistical strategies necessary to solve the exercises, readers will be prepared to successfully study even higher-level statistical theory.

Scientific Computing - An Introduction using Maple and MATLAB This book presents a structured approach to formulate, model, and solve mathematical optimization problems for a wide range of real world situations. Among the problems covered are production, distribution and supply chain planning, scheduling, vehicle routing, as well as cutting stock, packing, and nesting. The optimization techniques used to solve the problems are primarily linear, mixed-integer linear, nonlinear, and mixed integer nonlinear programming. The book also covers important considerations for solving real-world optimization problems, such as dealing with valid inequalities and symmetry during the modeling phase, but also data interfacing and visualization of results in a more and more digitized world. The broad range of ideas and approaches presented helps the reader to learn how to model a variety of problems from process industry, paper and metals industry, the energy sector, and logistics using mathematical optimization techniques.

An Introduction to Optimization Sensitivity analysis and optimal shape design are key issues in engineering that have been affected by advances in numerical tools currently available. This book, and its supplementary online files, presents basic optimization techniques that can be used to compute the sensitivity of a given design to local change, or to improve its performance by local optimization of these data. The relevance and scope of these techniques have improved dramatically in recent years because of progress in discretization strategies, optimization algorithms, automatic differentiation, software availability, and the power of personal computers. Numerical Methods in Sensitivity Analysis and Shape Optimization will be of interest to graduate students involved in mathematical modeling and simulation, as well as engineers and researchers in applied mathematics looking for an up-to-date introduction to optimization techniques, sensitivity analysis, and optimal design.

Solutions Manual This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.

Practical Mathematical Optimization The first comprehensive introduction to the powerful moment approach for solving global optimization problems.

An Introduction to Polynomial and Semi-Algebraic Optimization This book provides an introduction to optimization theory and its applications. It is written for senior undergraduate students and first-year graduate students of telecommunication and related fields. Most applications pertain to communication and network problems. The book has practical examples to accompany rigorous discussion so that the reader may develop intuitive understanding on relevant concepts. The materials have been developed from course notes. By attempting to cover convex, linear, and integer optimization for a one-semester course, the author focuses on fundamental concepts and techniques rather than trying to be comprehensive. Infact, the book is written with the main intention to serve as a bridge for students with no prior background in optimization to be able to access more advanced books on the subject later on.

Environmental Systems Engineering and Economics This work familiarises students with mathematical models (PDEs) and methods of numerical solution and optimisation. Including numerous exercises and examples, this is an ideal text for advanced students in Applied Mathematics, Engineering, Physical Science and Computer Science.

An Introduction to Structural Optimization With rapidly rising healthcare costs directly impacting the economy and quality of life, resolving improvement challenges in areas such as safety, effectiveness, patient-centeredness, timeliness, efficiency, and equity has become paramount. Using a system engineering perspective, Handbook of Healthcare Delivery Systems offers theoretical foundations, methodologies, and case studies in each main sector of the system. It explores how system engineering methodologies and their applications in designing, evaluating, and optimizing the operations of the healthcare system could improve patient outcomes and cost effectiveness. The book presents an overview of current challenges in the healthcare system and the potential impact of system engineering. It describes an integrated framework for the delivery system and the tools and methodologies used for performance assessment and process improvement with examples of lean concept, evidence-based practice and risk assessment. The book then reviews system engineering methodologies and technologies and their applications in healthcare. Moving on to coverage of the design, planning, control and management of healthcare systems, the book contains
chapters on 12 services sectors: preventive care, telemedicine, transplant, pharmacy, ED/ICU, OR, decontamination, laboratory, emergency response, mental health, food and supplies, and information technology. It presents the state-of-the-art operations and examines the challenges in each service unit. While system engineering concepts have been broadly applied in healthcare systems, most improvements have focused on a specific segment or unit of the delivery system. Each unit has strong interactions with others and any significant improvement is more likely to be sustained over time by integrating the process and re-evaluating the system design from a holistic viewpoint. By providing an overview of individual operational sectors in the extremely complex healthcare system and introducing a wide array of engineering methods and tools, this handbook establishes the foundation to facilitate integrated system thinking to redesign the next generation healthcare system.

Introduction to Optimization Methods "The authors—a chemical engineer and a civil engineer—have complimented each other in delivering an introductory text on optimization for engineers of all disciplines. It covers a host of topics not normally addressed by other texts. Although introductory in nature, it is a book that will prove invaluable to me and my staff, and belongs on the shelves of practicing environmental and chemical engineers. The illustrative examples are outstanding and make this a unique and special book." —John D. McKenna, Ph.D., Principal, ETS, Inc., Roanoke, Virginia "The authors have adeptly argued that basic science courses—particularly those concerned with mathematics—should be taught to engineers by engineers. Also, books adopted for use in such courses should also be written by engineers. The readers of this book will acquire an understanding and appreciation of the numerous mathematical methods that are routinely employed by practicing engineers. Furthermore, this introductory text on optimization attempts to address a void that exists in college engineering curricula. I recommend this book without reservation; it is a library 'must' for engineers of all disciplines." —Kenneth J. Skipka, RTP Environmental Associates, Inc., Westbury, NY, USA

Introduction to Optimization for Chemical and Environmental Engineers presents the introductory fundamentals of several optimization methods with accompanying practical engineering applications. It examines mathematical optimization calculations common to both environmental and chemical engineering professionals, with a primary focus on perturbation techniques, search methods, graphical analysis, analytical methods, linear programming, and more. The book presents numerous illustrative examples laid out in such a way as to develop the reader's technical understanding of optimization, with progressively difficult examples located at the end of each chapter. This book serves as a training tool for students and industry professionals alike. FEATURES Examines optimization concepts and methods used by environmental and chemical engineering practitioners. Presents solutions to real-world scenarios/problems at the end of each chapter. Offers a pragmatic approach to the application of mathematical tools to assist the reader in grasping the role of optimization in engineering problem-solving situations. Provides numerous illustrative examples. Serves as a text for introductory courses, or as a training tool for industry professionals.

Exercises and Solutions in Statistical Theory First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.

Numerical Methods and Optimization Praise for the Third Edition "...guides and leads the reader through the learning path..." Examples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.

Introduction to Linear and Convex Programming Environmental Systems Engineering and Economics emphasizes the application of optimization, economics, and systems engineering to problems in environmental resources management. This senior level/graduate textbook introduces optimization theory and algorithms that have been successful in resolving water quality and groundwater management problems. Both linear programming and nonlinear optimization are presented. Multiobjective optimization and the linked simulation-optimization (LSO) methodology are also introduced. The basic principles of economics and engineering economics are also discussed to provide a framework for economic decision making. This text contains numerous example problems. Case studies are presented
that address water resources management issues in the north China plain, the control of saltwater intrusion in Jakarta, Indonesia, and groundwater resources management in the Yun Lin basin, Taiwan.

An Introduction to Nonlinear Optimization Theory This treatment focuses on the analysis and algebra underlying the workings of convexity and duality and necessary/sufficient local/global optimality conditions for unconstrained and constrained optimization problems. 2015 edition.

Practical Computer Vision Applications Using Deep Learning with CNNs Scientific computing is the study of how to use computers effectively to solve problems that arise from the mathematical modeling of phenomena in science and engineering. It is based on mathematics, numerical and symbolic/algebraic computations and visualization. This book serves as an introduction to both the theory and practice of scientific computing, with each chapter presenting the basic algorithms that serve as the workhorses of many scientific codes; we explain both the theory behind these algorithms and how they must be implemented in order to work reliably in finite-precision arithmetic. The book includes many programs written in Matlab and Maple - Maple is often used to derive numerical algorithms, whereas Matlab is used to implement them. The theory is developed in such a way that students can learn by themselves as they work through the text. Each chapter contains numerous examples and problems to help readers understand the material “hands-on”.

An Introduction to Optimization Techniques This book introduces readers to innovative bio-inspired computing techniques for image processing applications. It demonstrates how a significant drawback of image processing – not providing the simultaneous benefits of high accuracy and less complexity - can be overcome, proposing bio-inspired methodologies to help do so. Besides computing techniques, the book also sheds light on the various application areas related to image processing, and weighs the pros and cons of specific methodologies. Even though several such methodologies are available, most of them do not provide the simultaneous benefits of high accuracy and less complexity, which explains their low usage in connection with practical imaging applications, such as the medical scenario. Lastly, the book illustrates the methodologies in detail, making it suitable for newcomers to the field and advanced researchers alike.

Numerical Methods in Sensitivity Analysis and Shape Optimization For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro

An Introduction to Computational Science This text presents a multi-disciplined view of optimization, providing students and researchers with a thorough examination of algorithms, methods, and tools from diverse areas of optimization without introducing excessive theoretical detail. This second edition includes additional topics, including global optimization and a real-world case study using important concepts from each chapter. Introduction to Applied Optimization is intended for advanced undergraduate and graduate students and will benefit scientists from diverse areas, including engineers.

Business Optimization Using Mathematical Programming A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text the optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Copyright code: 6a2fbb5ac7188afab28ee0b5ceb23032